1. On a finite dimensional (real) vector space X, assume that $\|\cdot\|_1$ and $\|\cdot\|_2$ are two norms on it. Prove that there exist α and β in \mathbb{R} , such that $\alpha > 0, \beta > 0$ and

$$\alpha \cdot \|x\|_2 \leq \|x\|_1 \leq \beta \cdot \|x\|_2 \quad \forall x \in X.$$

In other words, you need to prove that all the norms on finite dimensional vector spaces are equivalent.

Hint: One approach is like this.

Assume that X is n-dimensional, and assume that e_1, \dots, e_n is a basis for X (with e_1, \dots, e_n being linear independent). It is easy to show that there exists $c \in \mathbb{R}_{>0}$, such that $||e_i||_1 \leq c ||e_i||_2$ for all $i \in$ $\{1, \dots, n\}$. For every given $x \in X$, we have unique $\lambda_1, \dots, \lambda_n \in \mathbb{R}$, such that $x = \sum_{i=1}^n \lambda_i e_i$. Without loss of generality, we assume that $x \neq 0$. We can get

$$\|x\|_{1} = \left\|\sum_{i=1}^{n} \lambda_{i} e_{i}\right\|_{1} \leq \sum_{i=1}^{n} |\lambda_{i}| \|e_{i}\|_{1} \leq c \sum_{i=1}^{n} |\lambda_{i}| \|e_{i}\|_{2}.$$

Let $E = \max\{\|e_1\|_2, \dots, \|e_n\|_2\}$. Then we have

$$\|x\|_1 \le cE \sum_{i=1}^n |\lambda_i|.$$

Without loss of generality (else, just substitute x by $\frac{x}{\sum_{i=1}^{n} |\lambda_i|}$), we can assume that $\sum_{i=1}^{n} |\lambda_i| = 1$. Thus we get

$$\|x\|_1 \le cE, \forall x \in X .$$

If we can show that there exists $\delta > 0$, such that

$$||x||_2 \ge \delta$$
 for all $x = \sum_{i=1}^n \lambda_i e_i$ with $\sum_{i=1}^n |\lambda_i| = 1$,

by letting $\beta = cE/\delta$, we have

$$\|x\|_1 \le \beta \|x\|_2 \quad \text{for all} \ x.$$

To show the existence of such δ , assume the opposite case. That is, assume $\inf_{x \in D} ||x||_2 = 0$, where $D = \{\sum_{i=1}^n \lambda_i e_i \text{ with } \sum_{i=1}^n |\lambda_i| = 1\}.$

We can suppose $\lim_{k\to\infty} ||x_k||_2 = 0$, where $\{x_k\}$ is a sequence in D, with

$$x_k = \sum_{i=1}^n \lambda_i^{(k)} e_i$$

For those $\lambda_1^{(k)}$ s, note that $|\lambda_1^{(k)}| \leq 1$. Due to the compactness of [-1, 1], there exists a subsequence $\{x_{k_r}\}$ of $\{x_k\}$, such that under this subsequence, $\lambda_1^{k_r}$ is convergent. By abusign the notation, we can assume that λ_1^k is convergent, say, it converges to λ_1 . Do similiar things to coefficients of e_2, \cdots , until e_n , and we can eventually get an contradiction (it is your job to finish this part).

Suppose this is done, we proved that $||x||_1 \leq \beta ||x||_2$ for all x. Similarly, we can prove the other direction (concerning α).